17. Закономерности химических процессов.

Понятие о скорости химической реакции. Факторы, влияющие на изменение скорости химической реакции

Скорость химической реакции есть отношение изменения концентрации реагентов или продуктов реакции в единицу времени.

Скорость элементарной стадии химической реакции пропорциональна произведению концентраций реагентов в степенях, равных их стехиометрическим коэффициентам.

Скорость реакции возрастает в 2-4 раза (коэффициент γ) при повышении температуры на каждые 10° , а время окончания реакции уменьшается в это же число раз (правило Вант-Гоффа). При увеличении на Δt° скорость реакции возрастает в $\gamma^{\Delta t/10}$ раз.

Обратимые и необратимые химические реакции. Химическое равновесие и условия его смещения.

Химические реакции, которые при одних и тех же условиях могут идти в противоположенных направлениях, называются обратимыми.

Состояние, в котором скорость обратной реакции становится равной скорости прямой реакции, называется химическим равновесием.

Смещение химического равновесия:

Принцип Ле Шателье: внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.

- при увеличении концентрации одного из реагирующих веществ равновесие смещается в сторону расхода этого вещества, при уменьшении концентрации равновесие смещается в сторону образования этого вещества.
- при увеличении давления равновесие смещается в сторону уменьшения числа молекул газообразных веществ; при уменьшении давления равновесие смещается в сторону возрастания числа молекул газообразных веществ. Если реакция протекает

без изменения числа молекул газообразных веществ, то давление не влияет на положение равновесия в этой системе.

при повышении температуры равновесие смещается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции.

Тепловой эффект химической реакции.

Тепловой эффект реакции Q связан с изменением энтальпии веществ H (энергетической характеристикой веществ). Если в ходе реакции энтальпия веществ уменьшается ($\Delta H < 0$), реакция экзотермична, т.е. Q>0. При $\Delta H > 0$, Q<0.

Тепловой эффект химической реакции не зависит от пути её проведения.

Следствия из закона Гесса:

- **1.** Термохимические уравнения можно складывать левыми и правыми частями, умножать и делить на число и тд. при этом соответствующие действия следует выполнять и над значениями тепловых эффектов.
- **2.** Теплота реакции равна сумме теплот образования продуктов реакции, умноженных на стехиометрические коэффициенты при формулах этих продуктов за вычетом суммы теплот образования исходных веществ, умноженных на их стехиометрические коэффициенты.

$$Q_{\text{реакции}} = \sum v_{\text{прод j}} \cdot Q_{\text{обр(прод j)}} - \sum v_{\text{исх в i}} \cdot Q_{\text{обр (исх в i)}}$$

Теплотой образования (кДж/моль) соединения называется количество теплоты, которое выделяется или поглощается при образовании одного моля химического соединения из простых веществ.

Теплота образования простого вещества при стандартных условиях равна 0.

- 1. Скорость реакции водорода с азотом увеличивается при:
- 1) понижении температуры

3) разбавлении смеси воздухом

2) понижении давления

- 4) использовании катализатора
- 2. Скорость реакции оксида углерода (II) с кислородом уменьшается при:
- 1) понижении температуры

2) повышении давления	4) повышении концентрации
3) повышении концентрации	оксида углерода (II)
кислорода	
3. Катализатор требуется для проведения р	еакции:
1) бромирования гексана	3) бромирования фенола
2) нейтрализации уксусной	4) этерификации уксусной
кислоты	кислоты
4. Давление влияет на скорость реакции ме	ежду:
1) гидроксидом меди (II) и серной кислотой	4) серой и железом
2) цинком и соляной кислотой	
3) азотом и кислородом	
5. Скорость реакции $Fe + H_2SO_4 = FeSO_4 +$	$H_2 + Q$ понизится при:
1) измельчении порошка железа	3) повышении давления
2) понижении давления	4) разбавления раствора кислоты
6. Как запишется выражение для скорости	и реакции $2A + B = B$, если считать,
что она идет в одну сторону:	
1) v = k [B]	3) $v = k [A][B]$
$2) v = k [A]^2$	4) $v = k [A]^2 [B]$
7. Для увеличения скорости реакции	между газообразными веществами
необходимо:	
1) повысить температуру и	3) повысить давление и понизить
давление	температуру
2) понизить температуру и	4) понизить давление и повысить
давление	температуру

1) снижению энер	гии активации	3)	возрастанин	о теплот	ы реакци	И
2) повышению эн	ергии активации	4)	уменьшени	ю теплот	гы реакци	и;
9. В состоянии хи	мического равної	весия равны:				
1) концентрац	ции исходных	3)	скорости	прямой	и обраті	ной
веществ и продукт	гов реакции	pea	акции			
2) массы исход	ных веществ и	4)	справед	ЛИВЫ	все	ЭТИ
продуктов реакци	И	утн	верждения			
10. Равновесие об	ратимой реакции	$12SO_2 + O_2 \leftrightarrow$	\Rightarrow 2SO ₃ + Q \Rightarrow	смещает	ся в сторе	эну
образования SO_3 при и	зменении отдель	но каждого фа	актора:			
1) при повышени	и температуры и	3)	при повы	шении	давления	И
повышении давле	ния	ПОІ	нижении те	мперату	ры	
2) при понижени	и температуры и	4)	при пони	жении	давления	И
понижении давле	К ИН	ПОІ	вышении	-	гемперату	/ры
11. Для смещения	и химического раз	вновесия обра	атимой реак	сции N ₂	$+ O_2 \leftrightarrow 2$	NO
- Q в сторону образова	ания NO необход	имо изменить	отдельно к	аждое из	з условий	•
1) повысить	температуру и	4)	понизить	темп	ературу,	a
давление		ИЗМ	менение дал	вления н	не влияет	на
2) понизить	температуру и	ран	вновесие			
давление						
3) повысить	температуру, а	L				
изменение давлен	ния не влияет на	L				
равновесие						
12. При увеличен	нии давления в 2	2 раза скорос	ть реакции	2A _(r) +	$B_{(r)} \rightarrow A$	A_2B
(условно реакция прот	екает в одну стад	цию) увеличив	вается:			
1) в 2 раза	2) в 4 раза	3) в 6 раз	4) в 8	раз		

8. Катализатор ускоряет химическую реакцию благодаря:

13. Во ско	лько раз надо увелич	ить давление, ч	тобы скорость	реакции $A_{(ra3)}$ +		
$B_{(\Gamma a3)} \rightarrow AB \text{ ybes}$	пичилась в 10 раз:					
1) в 2 раза	1) в 2 раза 2) в $\sqrt{10}$ раз 3) в $\sqrt[3]{2}$		4) в 10 раз			
14. При по	вышении температуры	на 30° (ү=3) ско	рость реакции	возрастает:		
1) в 3 раза	2) в 9 раз	3) в 27 раз	4) в 81 раз			
15. Для об	братимой реакции 2С	$_{(TB)} + O_{2(\Gamma)} \leftrightarrow 2$	2CO _(г) + Q рав	новесие вправо		
смещается:						
1) при увел	ичении давления	3) п	ри повышении	температуры		
2) при умен	ньшении давления	4)	при доба	влении $C_{(TB)}$		
16. B peaki	ции $C_2H_{6(\Gamma)} \leftrightarrow C_2H_{4(\Gamma)} +$	H _{2(г)} – Q увеличи	ить выход $\mathrm{C_2H_4}$	онжом:		
1) повысив	давление	3) п	3) повысив концентрацию Н2			
2) повысив	температуру	4)	применив	катализатор		
17. B реаки	ции $C_3H_{6(r)}+H_{2(r)}\leftrightarrow C_3$	H _{8(r)} + Q увелич	ить выход $\mathrm{C_3H_8}$:онжом		
1) повысив	температуру	3) п	онизив концент	грацию Н2		
2) примени	в катализатор	4) п	4) повысив давление			
18. Heoбpa	тима реакция:					
1) разложе	ния перманганата кали	я 3) д	цегидрирования	пропана		
2) гидратаг	ции этилена	4) c	4) соединения азота с водородом			
19. Обрати	мой является реакция,	уравнение котој	рой:			
1) NaOH+	$HCl \rightarrow NaCl + H_2O$	3) C	$C + O_2 \rightarrow CO_2$			
2) $H_2 + I_2 -$	→ 2HI	4) ($CaCO_3 + 2HC1 -$	\rightarrow CaCl ₂ + CO ₂ +		
		H_2C)			

20. Давление не влияет на равновесие в реакции:

1)
$$N_{2(r)} + 3H_{2(r)} \leftrightarrow 2NH_{3(r)}$$

3)
$$C_{(TB)} + CO_{2(r)} \leftrightarrow 2CO_{(r)}$$

2)
$$N_{2(r)} + O_{2(r)} \leftrightarrow 2NO_{(r)}$$

$$4) CO_{2(r)} + H_2O_{(x)} \longleftrightarrow H_2CO_{3(p-p)}$$

21. Равновесие сместится в сторону продуктов реакции, как при понижении температуры, так и при повышении давления, в реакции:

$$1) \ Fe_3O_{4(TB)} + CO_{(r)} \leftrightarrow 3FeO_{(TB)} + \\$$

3)
$$C_{(TB)} + H_2O_{(r)} \leftrightarrow H_{2(r)} + CO_{(r)} - Q$$

$$CO_{2(\Gamma)} + Q$$

2)
$$C_{(TB)} + CO_{2(r)} \leftrightarrow 2CO_{(r)} - Q$$

4)
$$C_2H_{2(r)} + H_{2(r)} \leftrightarrow C_2H_{6(r)} + Q$$

22. В реакции: $CO_{(r)} + 2H_{2(r)} \leftrightarrow CH_3OH_{(r)} + Q$ равновесие сместится в сторону продуктов реакции при:

- 1) повышении температуры и
- 3) понижении температуры и

повышении давления

повышении давления

- 2) повышении температуры и понижении давления
- 4) понижении температуры и понижении давления;

23. Равновесие в реакции, уравнение которой $CH_{4(\Gamma)} + 4S_{(ж)} \leftrightarrow CS_{2(\Gamma)} + 2H_2S_{(\Gamma)} + Q$ сместится влево при:

- 1) понижении давления
- 2) понижении температуры
- 3) дополнительном введении серы
- 4) увеличении концентрации H₂S;

24	. Тепловой эфо	фект р	еакции – это к	оличес	тво теплоть	і, которое	:
1)	выделяется	или	поглощается	при	образовани	ии одног	о моля
соедине	ения из прость	ых веш	цеств				
2)	выделяется ил	іи погл	пощается при с	горані	ии одного мо	оля соеди	нения
3)	выделяется в р	резуль	тате реакции р	азлож	ения одного	моля веш	цества
4)	выделяется	или і	поглощается	в резу	льтате реа	кции, в	которой
количес	ства реагенто	в и	продуктов (в	МОЛЯ	х) равны н	соэффици	ентам в

25. Термохимическое уравнение реакции : $4A1 + 3O_2 = 2Al_2O_3 + 3350$ кДж. Количество теплота, выделившееся при окислении 54 г алюминия, равно:

1) 837,5 кДж 2) 1675 кДж 3) 3350 кДж 4) 6700 кДж;

уравнении реакции;

26. В реакции протекающей в соответствии с термохимическим уравнением: $3H_2 + N_2 = 2NH_3 + 92$ кДж выделилось 23 кДж теплоты. Объём полученного (при н. у.) аммиака:

1) 5,6 л 2) 11,2 л 3) 22,4 л 4) 44,8 л;

27. В реакции протекающей в соответствии с термохимическим уравнением: $2Mg + O_2 = 2MgO + 1204$ кДж выделилось 1806 кДж теплоты. Масса вступившего в реакцию магния равна:

1) 1,5 Γ 2) 32 Γ 3) 36 Γ 4) 72 Γ;

28. При сжигании 64 г серы выделилось 594 кДж теплоты. Теплота образования сернистого газа равна (кДж/моль):

1) 148,5 2) 297 3) 594 4) 1188;

29. При взаимодействии 5,6 л (н. у.) фтора с избытком лития выделилось 308 кДж теплоты. Теплота образования фторида лития равна (кДж/моль):

- 1) 154 2) 308 3) 616 4) 1232;
- **30.** Теплота образования сульфида натрия равна 372 кДж/моль. Количество теплоты, образующееся при взаимодействии 11,5 г натрия с избытком серы, равно:
 - 1) 93
- 2) 186
- 3) 372
- 4) 744.

Ответы к теме № 17

№ задания	Ответ	№ задания	Ответ
1	4	16	2
2	1	17	4
3	4	18	1
4	3	19	2
5	4	20	2
6	4	21	4
7	1	22	3
8	1	23	4
9	3	24	4
10	3	25	2
11	3	26	2
12	4	27	4
13	2	28	2
14	3	29	3
15	2	30	1