24. Расчеты: объемных отношений газов при химических реакциях; массы вещества или объема газов по известному количеству вещества из участвующих в реакции

1. При вза	имодействии	14,4 г	карбида	алюминия	и 2 м	оль вод	цы обј	разуется
газ объемом	л (при н. у.).							

(Запишите ответ с точностью до сотых).

2. При взаимодействии 28,2 г фенола и раствора, содержащего 160 г брома, выпал осадок в количестве моль.

(Запишите ответ с точностью до десятых).

3. При взаимодействии 12,3 г нитробензола и 10 л водорода (при н. у.) выделился анилин в количестве моль.

(Запишите ответ с точностью до десятых).

4. При сжигании 2 л диметиламина в 8,5 л кислорода и пропускания полученной смеси через избыток известковой воды осталось л газа.

(Измерения объемов происходили при одинаковых условиях, в воздухе 21% по объему кислорода).

- **5.** Объем воздуха необходимый для сжигания 1,4 л этилена равен ___ л. (Измерения объемов происходили при одинаковых условиях).
- **6.** 3 л углекислого газа пропустили над раскаленным углем, а затем через избыток известковой воды, после чего собрали 3,6 л газа. Степень превращения углекислого газа составляет __ %.

(Измерения объемов происходили при одинаковых условиях).

- **7.** Масса азота, полученная при полном сгорании 5,6 л аммиака (н. у.), равна _ г.
- **8.** Объем (н. у.) хлороводорода, который потребуется для реакции с 186 г анилина, равен л.

(Запишите ответ с точностью до десятых).

9. Объем (н. у.) смеси газов, которая получится при сгорании 2 л оксида углерода (II) в 2 л кислорода, равен л.

Ответы к теме № 24

1.

$$Al_4C_3 + 12H_2O = 4 Al (OH)_3 + 3CH_4$$

 Al_4C_3 14,4/144 = 0,10 моль (недостаток)

 CH_{4-} 0.3 моль, 22.4 х0.3.= 6.72л

2.

$$C_6H_5OH + Br_2 = C_6H_2 Br_3OH + 3HBr_2$$

Фенол 28.2/94=0.3моль, бром 160/160=1моль (избыток)

 C_6H_2 $Br_3OH - 0.3$ моль

3.

$$C_6H_5NO_2+3H_2 = C_6H_5NH_2+2H_2O$$

 $C_6H_5NO_2$ 12.3 / 123 = 0,1 моль; H_2 10 / 22.4= 0,45 моль (избыток)

 $C_6H_5NH_20,1$ моль

4.

$$2(CH_3)_2\,NH + 7.5O_2 = 4\ CO_2 \ + 7\ H_2O\ +\ N_2$$

При сгорании 2π амина израсходовалось 7.5π кислорода, образовалось 2π азота , после поглощения углекислого газа осталось $8.5-7.5=1\pi$ кислорода, $1\pi-$ азота. Всего 2π литра

5.

$$C_2H_4 + 3O_2 = 2 CO_2 + 2H_2O$$

Израсходовалось 1.4 х 3= 4.2.л кислорода, объем воздуха 4.2/0.21=20л

6.

$$C + CO_2 = 2 CO$$

После поглощения CO_2 осталось 3.6.CO. На образование 3.6.л CO израсходовалось 3.6/2 = 1.8 л CO_2 или 1.8 х 100/3 = 60%

7.

$$\mathrm{NH_3}$$
 5.6/22.4 = 0.25 моль, $\mathrm{N_2}$ получится 0.25/2 = 0.125 моль, или 28 х 0.125 = 3.5г

8.

 $C_6H_5\,NH_2+HCl=[C_6H_5\,NH_3]Cl$

Анилина 186/93 = 2 моль, HCl 2 моль, $22.4 \times 2 = 44.8$ л

9.

$$O_2 + 2CO = 2 CO_2$$

 ${\rm O_{2-}}$ избыток, при сгорании 2 л CO образуется 2л CO $_2$, расходуется 1л ${\rm O_{2.}}$

В полученной смеси 2π CO_2 и 2-1= 1π O_2 , всего 2π