7. Общая характеристика неметаллов главных подгрупп IV-VII групп

Неметаллы — это химические элементы, для атомов которых характерна способность, принимать электроны до завершения внешнего слоя благодаря наличию, как правило, на внешнем электронном слое 4-х и более электронов и малому радиусу атомов по сравнению с атомами металлов.

Все элементы-неметаллы (кроме водорода) занимают в периодической системе химических элементов Д. И. Менделеева верхний правый угол, образуя треугольник, вершиной которого является фтор F, а основанием диагонали B-At.

Для неметаллов характерны высокие значения электроотрицательности, она изменяется в пределах от 2 до 4. неметаллы — это элементы главных подгрупп, преимущественно р-элементы, исключение составляет водород — s-элемент.

У атомов неметаллов преобладают окислительные свойства, то есть способность присоединять электроны.

В соответствии с численными значениями относительных электроотрицательностей окислительные способности неметаллов увеличиваются в

следующем порядке:

Все неметаллы, кроме фтора, проявляют восстановительные свойства (способность отдавать электроны). Причем эти свойства постепенно возрастают от кислорода к кремнию:

Физические свойства:

Простые вещества, образованные атомами неметаллов, построены с помощью ковалентных неполярных связей.

Два типа строения простых веществ неметаллов:

Молекулярное строение. При обычных условиях большинство таких веществ представляют собой газы (H_2 , N_2 , O_2 , F_2 , Cl_2 , O_3) или твердые вещества (I_2 , P_4 , S_8) и лишь бром (Br_2) является жидкостью. Все эти вещества летучи, в твердом состоянии они легкоплавки, и способны к возгонке.

Атомное строение. Вещества образованы длинными цепями атомов (C_n , B_n , Si_n , Se_n , Te_n) – имеют высокую твердость, высокие температуры кипения и плавления.

Многие элементы-неметаллы образуют несколько простых веществ – аллотропных модификаций.

Все газообразные вещества, жидкий бром, а также типичные ковалентные кристаллы представляют собой диэлектрики. Кристаллы непластичны, а любая деформация вызывает разрушение ковалентных связей. Большинство неметаллов не имеют металлического блеска.

Химические свойства.

1. Окислительные свойства неметаллов

- взаимодействие с металлами:

$$2Na + S = Na_2S$$

- взаимодействие с водородом (образуются летучие водородные соединения):

$$H_2 + Cl_2 = 2HCl$$

- любой неметалл выступает в роли окислителя в реакциях с теми неметаллами, которые имеют более низкое значение электроотрицательности:

$$2P + 3Cl_2 = 2PCl_3$$

- взаимодействие со сложными веществами:

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

2. Восстановительные свойства

- взаимодействие с кислородом (исключение – фтор):

$$4P + 5O_2 = 2P_2O_5$$

- взаимодействие со сложными веществами-окислителями:

$$S + 6HNO_3 = H_2SO_4 + 6NO_2 \uparrow + 2H_2O.$$

При взаимодействии с неметаллами концентрированная серная кислота восстанавливается до SO_2 .

	3.	C	щелочами	для	активных	немет	алло	в хара	ктерна	реакция
дис	проп	орци	онирования:							
	3I ₂ -	+ 6Na	aOH = 5NaI +	NaIO ₃	+ 3H ₂ O.					
	1. H	Іемет	аллы располо	жены:						
	1)	В	правой	ПОЛ	овине	3)	В	правой	верхней	і части
	Пер	иоди	ческой систе	МЫ		Пер	риоди	ической с	истемы	
	2)	ВС	второй	ПОЛ	овине	4)	В	левой	нижней	части
	Пер	иоди	ческой систе	МЫ		Пер	риоди	ической с	истемы;	
	2. C)цени	те правильно	сть суж	кдений о нем	іеталлах	:			
	A. E	Все н	еметаллы име	еют мол	іекулярное с	троение	•			
	Б. В	в реак	щиях неметал	ілы все	гда являютс	я окисли	теля	ми.		
	1) в	ерно	только А			4) o	ба су	уждения	неверны;	
	2) B	ерно	только Б							
	3) в	ерны	оба суждени	R						
	3. H	Какой	і́ тип химич	еской с	тэжом игкас	иметь	мест	о только	между	атомами
нем	еталл									
	ŕ		квнтная			,		лическая	[
	2) и	онна	Я			4) в	одор	одная;		
			тные свойства	•				-		
	1)	c yn	иеньшением	порядн	КОВОГО		•		ем поляр	
	HOM	epa	элемента	в пре	еделах	ПОЛ	яриз	уемости (связи Э –	Н
	одн	ого п	ериода			4)	с ув	еличени	ем числа	атомов
	2)	c yn	иеньшением	порядн	кового	вод	ород	а в молек	сулах;	
	НОМ	ера э	лемента в про	еделах	одной					
	груг	ППЫ								

5. Элемент образу	ет две аллотро	пные модифик	сации, при норма	льных условиях				
являющиеся твердыми веществами, не взаимодействующие с концентрированной								
соляной и азотной ки	слотами и реаг	гирующие со 1	щелочами. Высш	ий оксид этого				
элемента практически не проявляет окислительных свойств:								
1) фосфор	2) углерод	3) cepa	4) кремни	й;				
6. Какие немета	ллы не взаим	иодействуют ;	друг с другом	(при обычных				
условиях):								
1) фтор и водород	1) фтор и водород 3) азот и кислород							
2) хлор и фосфор		4)	сера и кислород	,				
7. Какой из немета	_							
1) кремний	2) cepa	3) хлор	4) фосфор	•				
8. Химическая свя	зь в молекуле 9	S_8 :						
1) ковалентная по	лярная	4)	металлическая;					
2) ковалентная нег	полярная							
3) ионная								
9. В ряду NH ₃ – Pl	9. В ряду NH ₃ – PH ₃ происходит увеличение:							
1) основных свойс	•		длины связи					
2) прочности связ			полярности связ	и;				
10 Degradie I	ID « произусти							
10. В ряду НF — Н	тът происходи	•						
1) силы кислот		,	восстановительн	ных своиств				
2) полярности свя	3И	4)	длины связи;					
11. При переходе	11. При переходе от азота к фосфору, мышьяку и висмуту неметаллические							

свойства элемента:

	1) убывают			3) возрастают				
	2) не изменян	отся		4) сначала	возрастают,	а затем		
				убывают;				
	12. Усиление (окислительных сво	ойств происх	кодит в ряду:				
	1) S – Cl ₂	$2) Cl_2 - Br_2$	3) Br ₂ –	Se 4) S -	- Se;			
	13. С растворо	ом гидроксида калі	ия взаимодей	йствует:				
	1) MgO	2) Cl ₂	3) C	4) Fe;				
	14 . Сера не вза	аимодействует с:						
	1) Al	2) Cu	3) H ₂ O	4) O ₂	;			
	15. Сера реаги	рует со следующи	ми вещества	ами:				
	1) Al и O ₂			3) Na и CO ₂				
	2) H ₂ и Au			4) Na и I ₂ ;				
	16. Необычн	ые степени окис	ления кисл	порода -1 и	+2 имеют	место в		
coe	единениях:							
	1) SO ₂ и HNO ₃	3		3) H ₂ O ₂ и OF ₂				
	2) H ₂ O и SO ₃			4) О ₃ и О ₂ ;				
	17 . Кислород 1	вступает в реакцин	o c:					
	1) Ag	2) Cl ₂	3) CO	4) Ba	n(OH) ₂ ;			
	18. В лаборато	рных условиях оз	он получают	2:				
	1) разложе	ением перокси	да	3) разложен	нием перм	ианганата		
	водорода			калия				
	2) разложение	м перхлората кали	R	4) действис	ем электр	оического		
				разряда на кис	слород;			

19 .	B	промышленности	аммиак	получают.
エノ・	L	11DOMDIE:	amminiman	mony faior.

- 1) взаимодействием азота и 3) разложением хлорида аммония
- водорода в присутствии 4) разложением гидроксида

катализаторов при высоком аммония;

давлении

2) реакцией хлорида аммония и гашеной извести

20. В промышленности оксид серы (VI) получают:

- 1) обжигом серного колчедана 3) окислением оксида серы (IV) с (пирита) FeS_2 помощью кислорода воздуха
- 2) окислением серы с помощью (катализатор)
- кислорода воздуха 4) дегидратацией H_2SO_4 .

Ответы к теме № 7

№ задания	Ответ	№ задания	Ответ
1	3	11	1
2	4	12	1
3	1	13	2
4	3	14	3
5	4	15	1
6	3	16	3
7	2	17	3
8	2	18	4
9	3	19	1
10	2	20	3