Кемеровский государственный университет Кафедра аналитической химии

" Утверждаю" Декан химического факурыта

В.Я.Денисов

" 29 " инони

Мегодические указания по ионометрическому определению галогенид-анионов

Кемерово 2000

Содержание

Зведение
. Общие указания к практическим работам
. Определение активности, концентрации ионов брома.
Оценка коэффициента селективности
2.1. Оборудование и реактивы
2.2. Измерение ЭДС гальванического элемента на приборе рН-340
2.3. Порядок определения
. Литература

Введение

В методических указаниях описывается методика ионометрического определения галогенид-анионов с применением соответствующих ионоселективных электродов (ИСЭ) с твердыми мембранами. Используя соответствующие ИСЭ, можно аналогичным образом определить цианид- и роданид-анионы, либо активность ионов металлов, если индикаторными являются катионоселективные электроды. Пользуясь методом ионометрии, можно определить в питьевой воде содержание СІ – ионов, сравнив полученные результаты с полученными результатами по методике ГОСТ.

1. Общие указания к практическим работам

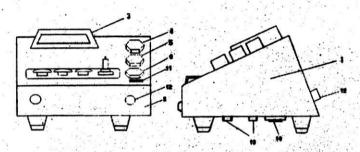
- 1. Прежде чем приступить к выполнению практических работ по ионометрии, необходимо познакомиться с:
 - а) описанием прибора, с методикой измерения на нем по инструкции;
 - б) методикой выполнения работы.
- Изучить правила подготовки электродов к работе и обращения с ними.
- Перед выполнением работ надо четко представлять себе теоретические основы метода, механизм изучаемых химических и электрохимических процессов.
- По окончании работы электроды ополоснуть дистиллированной водой и оставить на хранение в соответствии с инструкцией.
 - 5. Прибрать рабочее место, посуду, сдать рабочее место лаборанту.
 - Определение активности, концентрации нонов брома.
 Определение коэффициента селективности Къ-/ла-

Определение активности, концентрации ионов брома проводится прямым методом, называемым также методом калибровочных кривых.

- 2.1.Оборудование и реактивы, посуда
- 1. Индикаторный электрод ОР-Вг-7111Д.
- 2. Хлорсеребряный электрод сравнения ЭВЛ-ІМ-3.
- 3. Нитратный электролитический ключ.
- 4. Стандартный раствор 0,1М КВг.
- 5. 0,1М раствор KNO3, 0,1М раствор KCI, KCNS.
- Мерные колбы (50 мл или 100 мл), пипетки на 10 или 20 мл, стаканчики.
 - 7. Измерительный прибор рН-милливольтметр.

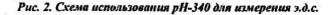
2.2 Измерение э.д.с. гальванического элемента на приборе рН-340

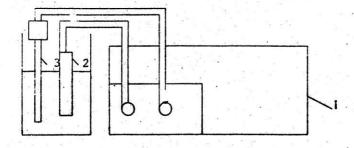
Прибор рН-340 может быть применен не только как рН-метр, но и как милливольтметр, причем электроды ГЭ могут подключаться и непосредственно к клеммам прибора и через датчик ДЛ-02.


В качестве измерительного электрода используется ионоселективный электрод, в качестве сравнительного – хлорсеребряный электрод. Электроды подключаются непосредственно к прибору в соответствии с маркировкой на задней стенке корпуса (см. рис. 2).

Подключить прибор к сети 220 В; 50 Гц с помощью сетевого шнура, включить прибор, для чего повернуть ручку 9 (рис. 1) по часовой стрелке. При наличии напряжения питания на передней панели прибора загорается контрольная лампочка. Переключатель рода работы включить на измерени. э.д.с. в мВ. Переключатель размаха работы включить на измерение э.д.с. в мВ. Переключатель размаха работ поставить на отметку 15. В этом случае размах шкалы -100 - +1400 мв. Выясния приблизительное значение э.д.с., измерить более точно значение э.д.с., переводя переключатель «размах» в положение «ЗрН».

Можно работать, используя следующие диапазоны э.д.с., мВ: -100-200; 200-500; 500-800; 800-1100; или те же диапазоны со знаком «минус».


Ручку «Температура раствора» установить на значение температуры контролируемого раствора. После измерения электроды следует ополоснуть дистиллированной водой и осущить фильтрованной бумагой.


Рис. 1. Общий вид прибора рН-340

- 1 основание
- 2 крышка
- 3 показывающий прибор
- 4 переключатель рода работы
- 5 переключатель пределов измерения
- 6 ручной термокомпенсатор
- 7 потенциометр настройки Е.
- 8 потенциометр настройки Е
- 9 потенциометр установки нуль-индикатора и включатель сети
- 10 переключатель размаха шкалы
- 11 индикатор включения
- 12 винты крепления крышки к основанию
- 13 винты для установки соединительной коробки

14 - скоба для измерения угла наклона прибора

- 1 прибор рН-340;
- 2 измерительный электрод (стеклянный или платиновый)
- 3 вспомогательный электрод

2.3. Порядок определения

1. Подготявливают к работе гальванический элемент. В качестве индикаторного используется ионоселективный электрод марки ОР-Въ-7111Д, обратимый к Вт- ионам. Данный электрод позволяет определять величину рВг в интервале 1-6. Перед работой электрод вымачивают 1-2 часа в 10⁻¹ — 10⁻³М растворе КВг. Электродом сравнения служит клорсеребряный электрод марки ЭВЛ-ІМ-3. Электродо перед измерением подготавливают к работе, попеременно трижды выдержав в колодной и горячей воде по 20 мин, заканчивая выдержкой в колодной воде. Затем через боковое отверстие в стеклянном корпусе электрода заливают насыщенный раствор клорида калия. В процессе работы необходимо следить, чтобы отверстие было открыто.

Потенциал хлорсеребряного электрода очень чувствителен к следам бромид-ионов: так, присутствие в хлориде калия 0,01 моль % бромид-ионов ведет к смещению потенциала на 0,1-0,2 мВ. Мешают определению бромид-ионов с Вг — селективным электродом ОР-Вг-7111Д хлорид-ионы. Поэтому индикаторный лектрод следует отделить электролитическим ключом с 0,1 М КNО3 в агар-агаре. Перед работой ключ необходимо ополоснуть дистиллированной водой, осущить. После окончания работы ключ положить в стакан с дистиллированной водой.

- 2. Измерительный прибор включают в сеть за 40 мин до начала измерений.
- 3. В мерных колбах готовят последовательным разбавлением 10⁻², 10⁻³, 10⁻⁴,10⁻⁵,10⁻⁶М растворы КВг из 0,1 М раствора, при этом каждый раз раствор доводят до метки децимолярным раствором нитрата калия, поддерживающим постоянную ионную силу.
- 4. Измеряют э.д.с. ГЭ. Измерения проводят, переходя из растворов с меньшей концентрацией к растворам с большей концентрацией. Перед погружением измерительного электрода, кончика электролитического ключа в исследуемый раствор, их следует осущить фильтрованной бумагой.

Во время измерения соблюдают все правила работы с используемым рН-милливольтметром.

Перед измерением контролируют температуру раствора.

5. Результаты измерений заносят в таблицу:

C _{KBr} , M	paBr	Е, мВ

Для определения pBr следует по справочнику найти величину fi при заданном значении ионной силы раствора, которая в сантимолярном и более разбавленных растворах бромида калия составляет 0,1. В 0,1М растворе КВг J=0,2. Можно величину коэффициента активности рассчитать по выражению Дсбая-Хюккеля:

$$-\log \gamma_i = (An_i^2 * 1^{1/2})/(1 + B_k 1^{1/2}),$$
 где

1 -оощая ионная сила раствора ($l=1/2*\Sigma c_i n_i^2$):

A,B – постоянные, зависимые от характера растворителя и температуры (A=0,509 и B=0,328 для воды при 25 0 C).

к – параметр Киэлланда, зависимый от величины гидратированного иона.

Коэффициенты активности для разных ионов и для разных величин ионной силы можно определить с помощью следующих таблиц.

Величины параметра Киэллана для разных ионов

	Одновалентные ноны
9	l r
6	Li ⁺ , (C ₂ H ₃) ₄ ⁺ , C ₆ H ₅ COO ⁻ , C ₆ H ₅ CH ₂ COO ⁻
5	(C ₂ H ₃) ₃ NH ⁺ , CHCl ₂ COO
4	Na ⁺ , (CH ₃) ₄ N ⁺ , (C ₂ H ₃) ₃ NH ₂ ⁺ , C ₃ H ₃ NH ₃ ⁺ , HCO ₃ ⁻ , H ₂ PO ₄ ⁻ , CH ₃ COO
3	K*, Rb*, Cs*, Tl*, Ag*, NH4*, (CH3)2NH2*, CH3NH3*, OH, F, I, Br, Cl
	CNS', ClO ₄ ', NO ₃ ', H ₂ (цитрат)
	Двувалентные ноны
8	Be ²⁴ , Mg ²⁴
6	Ca ²⁺ , Cu ²⁺ , Zn ²⁺ , Sn ²⁺ , Mn ²⁺ , Fe ²⁺ , Co ²⁺ , Ni ²⁺
5	Sr ²⁺ , Ba ²⁺ , Cd ²⁺ , Hg ²⁺ , Pb ²⁺ , CO ₃ ²⁻ , (COO) ₂ ²⁻ , (CHOHCOO) ₂ ²⁻ ,
	(CH ₂ COO) ₂ ² , (CH ₂ COO) ₂ ² , H(цитрат) ²
4	Hg ₂ ²⁴ , SO ₄ ² , S ₂ O ₃ ² , CrO ₄ ²
	Трехвалентные воны
9	Al ³⁺ , Fe ³⁺ , Cr ³⁺ , La ³⁺ , Ce ³⁺
5	(цитрат) ¹¹
_	La company de la

4	PO ₄ ³⁺	
	 Четырехвалентные ионы	
11	 Th ⁴⁺ , Ce ⁴⁺ , Sn ⁴⁺	

Величины коэффициента активности(уд), рассчитанные по расширенному выражению Дебая-Хюккеля для водных растворов при 25 °C

		- 99	Ионна	ая сила			
	0,001	0,0025	0,005	0,01	0,025	0,05	0,1
5 11 22	***************************************	Коэф	фициенть	активнос	сти, үі	•	
К			Одно	валентные	е ионы		
9	0,967	0,950	0,933	0,914	0,88	0,86	0,83
6	0,965	0,948	0,929	0,907	0,87	0,835	0,80
5	0,964	0,947	0,928	0,904	0,865	0,83	0,79
4	0,964	0,947	0,927	0,901	0,855	0,815	0,77
3	0,964	0,945	0,925	0,899	0,85	0,805	0,755
K			Двухі	валентные	ноны		
8	0,872	0,813	0,755	0,690	0,595	0,52	0,45
6	0,870	0,809	0,749	0,675	0,570	0,485	0,405
5	0,868	0,805	0,744	0,670	0,555	0,465	0,38
4	0,867	0,803	0,740	0,660	0,545	0,445	0,355
к			Трехи	виентные	ноны		<u> </u>
9 ·	0,738	0,632	0,540	0,445	0,325	0,245	0,180
5	0,728	0,616	0,510	0,405	0,270	0,180	0,115
4	0,725	0,612	0,505	0,395	0,250	0,160	0,095
ĸ	J						
11	0,588	0,455	0,350	0,255	0,155	0,100	0,065

Строят по полученным данным калибровочный график и находят область прямолинейной зависимости. Определяют угловой коэффициент наклона прямой tg $\alpha = \Delta E/\Delta C$, где ΔC – градиент концентраций, равный 10 (например, между 10^{-2} и 10^{-3} М), и сравнизают его с теоретическим значением, или tg $\alpha = \Delta E/\Delta pBr$, где $\Delta pBr = 1$.

- По градуировочному графику находят концентрацию неизвестного раствора.
- 7. Измеряют э.д.с. ГЭ в 0,1 М растворе HCl, 0,1 М KCNS, и рассчитывают коэффициенты селективности методом бионных потенциалов. Результаты представляют в виде таблицы.

Тип иона	Е, мВ	Ker-/an-
Br*		
CI'		
CNS.		

Ки-и- рассчитывают по формуле

$$lg(K_{Br-An-}) = -(E_2 - E_1)/v$$
, $K = 10^{-4E/v}$,

где E_2 — э.д.с. ГЭ в 0,1 М растворе соли КСІ, КСПS, а E_1 = э.д.с. ГЭ в 0,1 М растворе КВг, ν = ιg α , угловой коэффициент, найденный экспериментально при соответствующей температуре $K_{Br/An^-} = 10^{-\Delta E/\nu}$.

В присутствии посторонних ионов потенциал анионоселективных электродов, в том числе и галогенид-селективных, может быть описан уравнением Никольского-Эйзенмана:

$$E = E^0 - (RT/Z_{hal} F) + \ln(a_{hal} + K_{hal}/A_{n} \cdot a_{An}^{2})$$

где К_{ва-/Ав-} - коэффициент селективности Hal селективного электрода,

Z_{hal.} - заряд галогенид-аниона,

Z_{An} – заряд постороннего аниона.

Для оценки величины коэффициента селективности $K_{hal-/\Lambda n}$ измеряем потенциал в растворе, содержащем только Half - анионы, с активностью $a_{hal-\Lambda}$ при этом $E_1 = E^0 - (RT/ZF) ln(a_{hal-})$,

Далее измеряем потенциал электрода в растворе, содержащем только посторонние ак юны с активностью $a_{an}=a_{hal}$,

$$E_2 = E^0 - (RT/Z_{hal}.F) * ln(K_{hal-/An} * a_n)$$
 Находим $\Delta E = E_2 - E_1$, пусть $Z_{hal}.= Z_{An} = 1$, тогда
$$\Delta E = E^0 - (RT/F) * ln(K_{hal-/An} * a_n) + E^0 + (RT/ZF) ln(a_{hal}) =$$

$$= (RT/F) ln(a_{hal}/(K_{hal/An} * a_n)) = (2,3RT/F) lg (1/K_{hal/An}),$$
 $K_{hal/An} = 10^{-\Delta E/V}, v = 2,3RT/F.$
Если речь идет о катионоселективных электродах, то $K_{\Delta H/B+} = 10^{\Delta E/V}$.

Литература

- 1. Никольский В.П., Матерова Е.А. Ионоселективные электроды. -Л.: Химия, 1980.
- 2. Камман К. Работа с ионоселективными электродами. М. Мир, 1980.-С. 283.
- 3. Лакшминараянайах Н. Мембранные электроды. Л.: Химия, 1979. С. 18:
- 4. Сереб-ренникова Н.В. Ионометрия: Учебное пособие. Кемерово, 1984.

Подписано к печати 13.10.2000. Формат 60х84 1/16. Печать офсет. Бумага газетная Печ.л. 0, 35. Тираж 100 экз. Заказ № 173/696 Кемеровский государственный университет. 650043, Кемерово, ул.Красная,6. Издательство "Кузбассвузиздат". 650043, Кемерово, ул. Ермака,7.