Возможность электронного перехода определяется произведением $\Gamma_i \times T_{1u} = (\Gamma_{\psi b} \times \Gamma_{\psi a}) \times T_{1u}$. Если это прямое произведение содержит A_{1g} , то в переход разрешен орбитально. Если оно не

содержит A_{1g} , но содержит нечетное колебание, переход разрешен колебательно. Если не выполняется ни одно из этих условий, то в отсутствие каких-либо других возмущений,

влияющих на интенсивность, переход запрещен.

Например, переход 6, который полностью разрешен должен иметь высокую интенсивность $[\varepsilon \sim 10^3 - 10^4 \text{ л/(см-моль)}]$. Переходы 1, 2, 4 и 5 разрешены только колебательно, поэтому их интенсивность меньше [$\epsilon \sim 1$ — 10^2 л/(см-моль)]. Они разрешаются «подходящим колебанием» и наблюдаются при энергии, равной сумме энергии чисто электронного перехода и энергии кванта колебаний. Переходы 3 и 7 запрещены и орбитально, и колебательно; поэтому они не должны наблюдаться

		Прямое про- изведение	Прямое произве- дение		
	$\psi_b \psi_a$	$\Gamma_I = \Gamma(\psi_b) \times \Gamma(\psi_a)$	$\Gamma_i \times T_{1u}$		
1	A_{2g} A_{2g}	A_{1g}	T_{1u}	колебательно решен	раз-
2	$E_{\mathbf{g}}\cdots E_{\mathbf{g}}$	$A_{1g} + A_{2g} + E_{g}$	$2T_{1u}+2T_{2u}$	колебательно решен	раз-
3	$A_{2u} A_{2g}$	A_{1u}	T_{1g}	запр е щен	
4	$A_{1g} A_{2g}$	A_{2g}	T_{2u}	колебательно решен	раз-
5	$T_{2g} A_{2g}$	T_{1g}	$A_{1u} + E_{u} + T_{1u} + T_{2u}$	колебательно решен	раз-
6	$T_{2g} A_{2u}$	T_{1u}	$A_{1g} + E_{g} + T_{1g} + T_{2g}$	орбитально решен	раз-
7	$T_{2u} \cdot \cdot \cdot A_{1g}$	T_{2u}	$A_{2g} + E_{g} + T_{2g} + T_{1g}$	запрещен	